חAmIBIA UПIVERSITY
 OF SCIEПCE AПD TECHחOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of science; Bachelor of science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 07BSOC; 07BAMS	LEVEL: 6
COURSE CODE: CLS601S	COURSE NAME: CALCULUS 2
SESSION: NOVEMBER 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	Dr N. CHERE
MODERATOR:	Dr V. KATOMA

| INSTRUCTIONS |
| :--- | :--- |
| 1. Answer ALL the questions in the booklet provided. |
| 2. Show clearly all the steps used in the calculations. |
| 3. All written work must be done in blue or black ink and sketches must |
| be done in pencil. |

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)
1.1. Determine whether the following sequence converges or diverges. If it converges, determine where it converges.

$$
\begin{align*}
& \text { 1.1.1. }\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty} \tag{4}\\
& \text { 1.1.2. }\left\{\frac{n^{3}+n+1}{n^{2}+2 n}\right\}_{n=1}^{\infty} \tag{4}\\
& \text { 1.1.3. }\left\{(-1)^{n} \frac{1}{\sqrt{n}}\right\}_{n=1}^{\infty} \tag{4}
\end{align*}
$$

1.2. Let $f(x)=\frac{1}{x}$. Then determine the second order Taylor polynomial approximation of f about

$$
\begin{equation*}
x=1 \tag{5}
\end{equation*}
$$

1.3. Let $\mathrm{f}(\mathrm{x})=3 x^{2}+2 x+1$. Then
1.3.1. find the average value of f on $[0,2]$
1.3.2. find a point con $[0,2]$ that satisfy the Mean Value Theorem for Integrals.
1.4. Evaluate the following indefinite integrals.
1.4.1. $\int(\ln x)^{2} d x \quad$ (use Integration by parts)
1.4.2. $\int \tan ^{3} \mathrm{xsec}^{4} \mathrm{xdx}$

1.6. Let $\mathrm{F}(\mathrm{x})=\int_{1}^{\mathrm{x}^{2}} \ln \left(\mathrm{t}^{2}+1\right) \mathrm{dt}$. Use the fundamental theorem of calculus to find $\mathrm{F}^{\prime}(\mathrm{x})$. [8]
1.7. Determine whether the following series converges or diverges. If it converges, find the sum.
1.7.1. $\sum_{k=1}^{\infty} 2^{k} 5^{1-k}$
1.7.2. $\sum_{k=1}^{\infty} \frac{1}{(k+1)(k+2)}$
1.8. Find the interval of convergence and radius of convergence for the power series
$\sum_{k=1}^{\infty} \frac{(x-5)^{k}}{3^{k}}$
1.9. Consider the region enclosed by the curves $x=y^{2}, \mathrm{y}=x^{2}$. Then
1.9.1. Find the area of region enclosed by the curves $x=y^{2}, \mathrm{y}=x^{2}$.
1.9.2. Use the result in (1.9.1) to find the center of mass of the lamina enclosed by the region

$$
\begin{equation*}
x=y^{2}, y=x^{2} . \tag{7}
\end{equation*}
$$

1.9.3. Find the volume of the solid generated when the region between the curves $x=y^{2}$, $y=x^{2}$ revolved about the y-axis.
1.10. Use the Simpson's rule to approximate $\int_{0}^{2} \sqrt{\mathrm{x}^{4}+1} \mathrm{dx}$ with $\mathrm{n}=8$. Write your answer in four decimal places. [7]

